---
title: "Summary of Bayesian Models as HTML Table"
author: "Daniel Lüdecke"
date: "`r Sys.Date()`"
output: rmarkdown::html_vignette
params:
EVAL: !r identical(Sys.getenv("NOT_CRAN"), "true")
---
```{r echo = FALSE}
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
message = FALSE
)
m1 <- m2 <- NULL
if (!requireNamespace("insight", quietly = TRUE) ||
!requireNamespace("httr", quietly = TRUE) ||
!requireNamespace("brms", quietly = TRUE)) {
knitr::opts_chunk$set(eval = FALSE)
} else {
knitr::opts_chunk$set(eval = TRUE)
library(insight)
library(httr)
library(sjPlot)
library(brms)
m1 <- tryCatch(insight::download_model("brms_zi_2"), error = function(e) NULL)
m2 <- tryCatch(insight::download_model("brms_mv_3"), error = function(e) NULL)
}
if (is.null(m1) || is.null(m2)) {
knitr::opts_chunk$set(eval = FALSE)
}
```
This vignette shows examples for using `tab_model()` to create HTML tables for mixed models. Basically, `tab_model()` behaves in a very similar way for mixed models as for other, simple regression models, as shown [in this vignette](tab_model_estimates.html).
```{r, results='hide', message=FALSE, warning=FALSE, eval=FALSE}
# load required packages
library(sjPlot)
library(brms)
# sample models
zinb <- read.csv("http://stats.idre.ucla.edu/stat/data/fish.csv")
set.seed(123)
m1 <- brm(bf(
count ~ persons + child + camper + (1 | persons),
zi ~ child + camper + (1 | persons)
),
data = zinb,
family = zero_inflated_poisson()
)
data(epilepsy)
set.seed(123)
epilepsy$visit <- as.numeric(epilepsy$visit)
epilepsy$Base2 <- sample(epilepsy$Base, nrow(epilepsy), replace = TRUE)
f1 <- bf(Base ~ zAge + count + (1 |ID| patient))
f2 <- bf(Base2 ~ zAge + Trt + (1 |ID| patient))
m2 <- brm(f1 + f2 + set_rescor(FALSE), data = epilepsy)
```
## Bayesian models summaries as HTML table
For Bayesian regression models, some of the differences to the table output from [simple models](tab_model_estimates.html) or [mixed models](tab_mixed.html) of `tab_models()` are the use of _Highest Density Intervals_ instead of confidence intervals, the Bayes-R-squared values, and a different "point estimate" (which is, by default, the median from the posterior draws).
```{r}
tab_model(m1)
```
## Multivariate response models
For multivariate response models, like mediator-analysis-models, it is recommended to print just one model in the table, as each regression is displayed as own "model" in the output.
```{r}
tab_model(m2)
```
## Show two Credible Interval-column
To show a second CI-column, use `show.ci50 = TRUE`.
```{r}
tab_model(m2, show.ci50 = TRUE)
```
## Mixing multivariate and univariate response models
When both multivariate and univariate response models are displayed in one table, a column _Response_ is added for the multivariate response model, to indicate the different outcomes.
```{r}
tab_model(m1, m2)
```