
Package: patchwork (via r-universe)
January 14, 2025

Type Package

Title The Composer of Plots

Version 1.3.0.9000

Maintainer Thomas Lin Pedersen <thomasp85@gmail.com>

Description The 'ggplot2' package provides a strong API for
sequentially building up a plot, but does not concern itself
with composition of multiple plots. 'patchwork' is a package
that expands the API to allow for arbitrarily complex
composition of plots by, among others, providing mathematical
operators for combining multiple plots. Other packages that try
to address this need (but with a different approach) are
'gridExtra' and 'cowplot'.

License MIT + file LICENSE

Encoding UTF-8

Imports ggplot2 (>= 3.0.0), gtable, grid, stats, grDevices, utils,
graphics, rlang (>= 1.0.0), cli, farver

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

URL https://patchwork.data-imaginist.com,

https://github.com/thomasp85/patchwork

BugReports https://github.com/thomasp85/patchwork/issues

Suggests knitr, rmarkdown, gridGraphics, gridExtra, ragg, testthat (>=
2.1.0), vdiffr, covr, png, gt (>= 0.11.0)

VignetteBuilder knitr

Config/Needs/website gifski

Repository https://ar-puuk.r-universe.dev

RemoteUrl https://github.com/thomasp85/patchwork

RemoteRef HEAD

RemoteSha 2695a9f0200b7fd73f295d5c8a3e13e3943078c5

1

https://patchwork.data-imaginist.com
https://github.com/thomasp85/patchwork
https://github.com/thomasp85/patchwork/issues

2 area

Contents
area . 2
free . 3
guide_area . 5
inset_element . 6
multipage_align . 7
plot_annotation . 9
plot_arithmetic . 10
plot_layout . 12
plot_spacer . 14
wrap_elements . 15
wrap_ggplot_grob . 17
wrap_plots . 18
wrap_table . 20

Index 22

area Specify a plotting area in a layout

Description

This is a small helper used to specify a single area in a rectangular grid that should contain a plot.
Objects constructed with area() can be concatenated together with c() in order to specify multiple
areas.

Usage

area(t, l, b = t, r = l)

Arguments

t, b The top and bottom bounds of the area in the grid

l, r The left and right bounds of the area int the grid

Details

The grid that the areas are specified in reference to enumerate rows from top to bottom, and
coloumns from left to right. This means that t and l should always be less or equal to b and r
respectively. Instead of specifying area placement with a combination of area() calls, it is possible
to instead pass in a single string

areas <- c(area(1, 1, 2, 1),
area(2, 3, 3, 3))

is equivalent to

free 3

areas < -"A##
A#B
##B"

For an example of this, see the plot_layout() examples.

Value

A patch_area object

Examples

library(ggplot2)

p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))
p3 <- ggplot(mtcars) + geom_bar(aes(gear)) + facet_wrap(~cyl)

layout <- c(
area(1, 1),
area(1, 3, 3),
area(3, 1, 3, 2)

)

Show the layout to make sure it looks as it should
plot(layout)

Apply it to a patchwork
p1 + p2 + p3 + plot_layout(design = layout)

free Free a plot from various alignments

Description

While the purpose of patchwork is often to align plots by their various parts, sometimes this doesn’t
cut it and we want to compose plots without alignment. The free() function tells patchwork
to treat the content (which can either be a ggplot or a patchwork) specially and not align it with
the remaining plots in the composition. free() has various modes to control what type of "non-
alignment" is applied (see Details). Further you can control which side of the plot the non-alignment
is applied to. You can stack free() calls if you e.g. want the top part to not align to the panel and
the left part to not align to the labels.

Usage

free(x, type = c("panel", "label", "space"), side = "trbl")

4 free

Arguments

x A ggplot or patchwork object

type Which type of freeing should be applied. See the Details section

side Which side should the freeing be applied to. A string containing one or more of
"t", "r", "b", and "l"

Details

free() has multiple modes depending on what you are needing:

The default "panel" will allow the panel area to ignore alginment with the remaining plots and
expand as much as needed to fill any empty space.

The "label" type will instead free the axis label to keep its proximity to the axis, even if a longer
axis text from another plot would push them apart.

The "space" type also keeps axis and title together, but will instead not reserve any space for it.
This allows the axis to occupy space in an otherwise empty area without making additional space
available for itself.

Value

A modified version of x with a free_plot class

Examples

Sometimes you have a plot that defies good composition alginment, e.g. due
to long axis labels
library(ggplot2)
p1 <- ggplot(mtcars) +

geom_bar(aes(y = factor(gear), fill = factor(gear))) +
scale_y_discrete(
"",
labels = c("3 gears are often enough",

"But, you know, 4 is a nice number",
"I would def go with 5 gears in a modern car")

)

When combined with other plots it ends up looking bad
p2 <- ggplot(mtcars) + geom_point(aes(mpg, disp))

p1 / p2

We can fix this be using free (here, with the default "panel" type)
free(p1) / p2

If we still want the panels to be aligned to the right, we can choose to
free only the left side
free(p1, side = "l") / p2

We can still collect guides like before
free(p1) / p2 + plot_layout(guides = "collect")

guide_area 5

We could use "label" to fix the layout in a different way
p1 / free(p2, "label")

Another issue is that long labels are not using already available free
space.
plot_spacer() + p1 + p2 + p2

This can be fixed with the "space" type
plot_spacer() + free(p1, "space", "l") + p2 + p2

guide_area Add an area to hold collected guides

Description

Using the guides argument in plot_layout() you can collect and collapse guides from plots. By
default these guides will be put on the side like with regular plots, but by adding a guide_area()
to the plot you can tell patchwork to place the guides in that area instead. If guides are not collected
or no guides exists to collect it behaves as a standard plot_spacer() instead.

Usage

guide_area()

Examples

library(ggplot2)
p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp, colour = factor(gear)))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))
p3 <- ggplot(mtcars) + geom_bar(aes(gear)) + facet_wrap(~cyl)

Guides are by default kept beeside their plot
p1 + p2 + p3

They can be collected and placed on the side (according to the patchwork
theme)
p1 + p2 + p3 + plot_layout(guides = 'collect', ncol = 2)

Using guide_area() you can also designate an empty area for this
p1 + p2 + p3 + guide_area() + plot_layout(guides = 'collect')

6 inset_element

inset_element Create an inset to be added on top of the previous plot

Description

The standard approach of patchwork is to place plots next to each other based on the provided
layout. However, it may sometimes be beneficial to place one or several plots or graphic elements
freely on top or below another plot. The inset_element() function provides a way to create such
insets and gives you full control over placement.

Usage

inset_element(
p,
left,
bottom,
right,
top,
align_to = "panel",
on_top = TRUE,
clip = TRUE,
ignore_tag = FALSE

)

Arguments

p A grob, ggplot, patchwork, formula, raster, nativeRaster, or gt object to add as
an inset

left, bottom, right, top
numerics or units giving the location of the outer bounds. If given as numerics
they will be converted to npc units.

align_to Specifies what left, bottom, etc should be relative to. Either 'panel' (default),
'plot', or 'full'.

on_top Logical. Should the inset be placed on top of the other plot or below (but above
the background)?

clip Logical. Should clipping be performed on the inset?

ignore_tag Logical. Should autotagging ignore the inset?

Value

A inset_path object

multipage_align 7

Examples

library(ggplot2)
p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))

Basic use
p1 + inset_element(p2, 0.6, 0.6, 1, 1)

Align to the full area instead
p1 + inset_element(p2, 0, 0.6, 0.4, 1, align_to = 'full')

Grobs and other objects can be added as insets as well
p1 + inset_element(grid::circleGrob(), 0.4, 0.4, 0.6, 0.6)

if (requireNamespace('png', quietly = TRUE)) {
logo <- system.file('help', 'figures', 'logo.png', package = 'patchwork')
logo <- png::readPNG(logo, native = TRUE)
p1 + inset_element(logo, 0.8, 0.8, 1, 1, align_to = 'full')

}

Just as expected insets are still amenable to changes after the fact
p1 +

inset_element(p2, 0.6, 0.6, 1, 1) +
theme_classic()

Tagging also continues to work as expected
p1 +

inset_element(p2, 0.6, 0.6, 1, 1) +
plot_annotation(tag_levels = '1')

but can be turned off, like for wrapped plots
p1 +

inset_element(p2, 0.6, 0.6, 1, 1, ignore_tag = TRUE) +
plot_annotation(tag_levels = '1')

multipage_align Align plots across multiple pages

Description

Sometimes it is necessary to make sure that separate plots are aligned, with each other, but still
exists as separate plots. That could e.g. be if they need to be part of a slideshow and you don’t
want titles and panels jumping around as you switch between slides. patchwork provides a range of
utilities to achieve that. Currently it is only possible to align ggplots, but aligning patchworks will
be supported in the future.

8 multipage_align

Usage

get_dim(plot)

set_dim(plot, dim)

get_max_dim(...)

align_patches(...)

Arguments

plot A ggplot object

dim A plot_dimension object as created by get_dim()

... ggplot objects or a single list of them

Value

get_dim() and get_max_dim() return a plot_dimension object. set_dim() returns a modified
ggplot object with fixed outer dimensions and align_patches() return a list of such. The modified
ggplots still behaves like a standard ggplot and new layers, scales, etc can be added to them.

Examples

library(ggplot2)
p1 <- ggplot(mtcars) +

geom_point(aes(mpg, disp)) +
ggtitle('Plot 1')

p2 <- ggplot(mtcars) +
geom_boxplot(aes(gear, disp, group = gear)) +
ggtitle('Plot 2')

p3 <- ggplot(mtcars) +
geom_point(aes(hp, wt, colour = mpg)) +
ggtitle('Plot 3')

p4 <- ggplot(mtcars) +
geom_bar(aes(gear)) +
facet_wrap(~cyl) +
ggtitle('Plot 4')

Align a plot to p4
p4_dim <- get_dim(p4)
set_dim(p1, p4_dim)

Align a plot to the maximum dimensions of a list of plots
max_dims <- get_max_dim(p1, p2, p3, p4)
set_dim(p2, max_dims)

Align a list of plots with each other

plot_annotation 9

aligned_plots <- align_patches(p1, p2, p3, p4)
aligned_plots[[3]]

Aligned plots still behave like regular ggplots
aligned_plots[[3]] + theme_bw()

plot_annotation Annotate the final patchwork

Description

The result of this function can be added to a patchwork using + in the same way as plot_layout(),
but unlike plot_layout() it will only have an effect on the top level plot. As the name suggests it
controls different aspects of the annotation of the final plot, such as titles and tags. Already added
annotations can be removed by setting the relevant argument to NULL.

Usage

plot_annotation(
title = waiver(),
subtitle = waiver(),
caption = waiver(),
tag_levels = waiver(),
tag_prefix = waiver(),
tag_suffix = waiver(),
tag_sep = waiver(),
theme = waiver()

)

Arguments

title, subtitle, caption
Text strings to use for the various plot annotations.

tag_levels A character vector defining the enumeration format to use at each level. Possible
values are 'a' for lowercase letters, 'A' for uppercase letters, '1' for numbers,
'i' for lowercase Roman numerals, and 'I' for uppercase Roman numerals. It
can also be a list containing character vectors defining arbitrary tag sequences.
If any element in the list is a scalar and one of 'a', 'A', '1', 'i, or 'I', this
level will be expanded to the expected sequence.

tag_prefix, tag_suffix
Strings that should appear before or after the tag.

tag_sep A separator between different tag levels

theme A ggplot theme specification to use for the plot. Only elements related to the
titles as well as plot margin and background is used.

10 plot_arithmetic

Details

Tagging of subplots is done automatically and following the order of the plots as they are added.
When the plot contains nested layouts the tag_level argument in the nested plot_layout will define
whether enumeration should continue as usual or add a new level. The format of the levels are
defined with tag_levels argument in plot_annotation

Value

A plot_annotation object

Examples

library(ggplot2)

p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))
p3 <- ggplot(mtcars) + geom_bar(aes(gear)) + facet_wrap(~cyl)

Add title, etc. to a patchwork
p1 + p2 + plot_annotation('This is a title', caption = 'made with patchwork')

Change styling of patchwork elements
p1 + p2 +

plot_annotation(
title = 'This is a title',
caption = 'made with patchwork',
theme = theme(plot.title = element_text(size = 16))

)

Add tags to plots
p1 / (p2 | p3) +

plot_annotation(tag_levels = 'A')

Add multilevel tagging to nested layouts
p1 / ((p2 | p3) + plot_layout(tag_level = 'new')) +

plot_annotation(tag_levels = c('A', '1'))

Use a custom tag sequence (mixed with a standard one)
p1 / ((p2 | p3) + plot_layout(tag_level = 'new')) +

plot_annotation(tag_levels = list(c('&', '%'), '1'))

plot_arithmetic Plot arithmetic

Description

In addition to the + operator known in ggplot2, patchwork defines logic for some of the other
operators that aids in building up your plot composition and reduce code-reuse.

plot_arithmetic 11

Usage

S3 method for class 'ggplot'
e1 - e2

S3 method for class 'ggplot'
e1 / e2

S3 method for class 'ggplot'
e1 | e2

S3 method for class 'gg'
e1 * e2

S3 method for class 'gg'
e1 & e2

Arguments

e1 A ggplot or patchwork object

e2 A ggplot or patchwork object in case of /, or a gg object such as a geom or
theme specification in case of * and &

Details

patchwork augment the + operator from ggplot2 and allows the user to add full ggplot objects
together in order to compose them into the same view. The last added plot is always the active one
where new geoms etc. are added to. Another operator that is much like it, but not quite, is -. It
also adds plots together but instead of adding the right hand side to the patchwork defined in the left
hand side, it puts the left hand side besides the right hand side in a patchwork. This might sound
confusing, but in essence - ensures that the right and left side are put in the same nesting level (+
puts the right side into the left side). Using - might seem unintuitive if you think of the operator as
"subtract", but look at it as a hyphen instead (the underlying reason is that - is the only operator in
the same precedence group as +). An alternative and more explicit way to get the same effect as -
is to use merge() on the left hand side.

Often you are interested in creating single column or single row layouts. patchwork provides |
(besides) and / (over) operators to support stacking and packing of plots. See the examples for their
use.

In order to reduce code repetition patchwork provides two operators for adding ggplot elements
(geoms, themes, facets, etc.) to multiple/all plots in a patchwork. * will add the element to all plots
in the current nesting level, while & will recurse into nested patches.

Value

A patchwork object

Examples

library(ggplot2)

12 plot_layout

p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))
p3 <- ggplot(mtcars) + geom_bar(aes(gear)) + facet_wrap(~cyl)
p4 <- ggplot(mtcars) + geom_bar(aes(carb))

Standard addition vs division
p1 + p2 + p3 + plot_layout(ncol = 1)
p1 + p2 - p3 + plot_layout(ncol = 1)

Stacking and packing
(p1 | p2 | p3) /

p4

Add elements to the same nesting level
(p1 + (p2 + p3) + p4 + plot_layout(ncol = 1)) * theme_bw()

Recurse into nested plots as well
(p1 + (p2 + p3) + p4 + plot_layout(ncol = 1)) & theme_bw()

plot_layout Define the grid to compose plots in

Description

To control how different plots are laid out, you need to add a layout specification. If you are nesting
grids, the layout is scoped to the current nesting level. An already set value can be removed by
setting it to NULL.

Usage

plot_layout(
ncol = waiver(),
nrow = waiver(),
byrow = waiver(),
widths = waiver(),
heights = waiver(),
guides = waiver(),
tag_level = waiver(),
design = waiver(),
axes = waiver(),
axis_titles = axes

)

Arguments

ncol, nrow The dimensions of the grid to create - if both are NULL it will use the same logic
as facet_wrap() to set the dimensions

plot_layout 13

byrow Analogous to byrow in matrix(). If FALSE the plots will be filled in in column-
major order

widths, heights The relative widths and heights of each column and row in the grid. Will get
repeated to match the dimensions of the grid. The special value of NA/-1null
will behave as 1null unless a fixed aspect plot is inserted in which case it will
allow the dimension to expand or contract to match the aspect ratio of the content

guides A string specifying how guides should be treated in the layout. 'collect' will
collect guides below to the given nesting level, removing duplicates. 'keep'
will stop collection at this level and let guides be placed alongside their plot.
auto will allow guides to be collected if a upper level tries, but place them along-
side the plot if not. If you modify default guide "position" with theme(legend.position=...)
while also collecting guides you must apply that change to the overall patchwork
(see example).

tag_level A string ('keep' or 'new') to indicate how auto-tagging should behave. See
plot_annotation().

design Specification of the location of areas in the layout. Can either be specified as a
text string or by concatenating calls to area() together. See the examples for
further information on use.

axes A string specifying how axes should be treated. 'keep' will retain all axes in
individual plots. 'collect' will remove duplicated axes when placed in the
same run of rows or columns of the layout. 'collect_x' and 'collect_y'
will remove duplicated x-axes in the columns or duplicated y-axes in the rows
respectively.

axis_titles A string specifying how axis titltes should be treated. 'keep' will retain all axis
titles in individual plots. 'collect' will remove duplicated titles in one direc-
tion and merge titles in the opposite direction. 'collect_x' and 'collect_y'
control this for x-axis titles and y-axis titles respectively.

Value

A plot_layout object to be added to a ggassmble object

Examples

library(ggplot2)

p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))
p3 <- ggplot(mtcars) + geom_bar(aes(gear)) + facet_wrap(~cyl)
p4 <- ggplot(mtcars) + geom_bar(aes(carb))
p5 <- ggplot(mtcars) + geom_violin(aes(cyl, mpg, group = cyl))

The plots are layed out automatically by default
p1 + p2 + p3 + p4 + p5

Use byrow to change how the grid is filled out
p1 + p2 + p3 + p4 + p5 + plot_layout(byrow = FALSE)

14 plot_spacer

Change the grid dimensions
p1 + p2 + p3 + p4 + p5 + plot_layout(ncol = 2, widths = c(1, 2))

Define layout at different nesting levels
p1 +

p2 +
(p3 +

p4 +
plot_layout(ncol = 1)

) +
p5 +
plot_layout(widths = c(2, 1))

Complex layouts can be created with the `design` argument
design <- c(

area(1, 1, 2),
area(1, 2, 1, 3),
area(2, 3, 3),
area(3, 1, 3, 2),
area(2, 2)

)
p1 + p2 + p3 + p4 + p5 + plot_layout(design = design)

The same can be specified as a character string:
design <- "

122
153
443

"
p1 + p2 + p3 + p4 + p5 + plot_layout(design = design)

When using strings to define the design `#` can be used to denote empty
areas
design <- "

1##
123
##3

"
p1 + p2 + p3 + plot_layout(design = design)

Use guides="collect" to remove duplicate guides
p6 <- ggplot(mtcars) + geom_point(aes(mpg, disp, color=cyl))
p7 <- ggplot(mtcars) + geom_point(aes(mpg, hp, color=cyl))
p6 + p7 + plot_layout(guides='collect')

Guide position must be applied to entire patchwork
p6 + p7 + plot_layout(guides='collect') &

theme(legend.position='bottom')

plot_spacer Add a completely blank area

wrap_elements 15

Description

This simple wrapper creates an empty transparent patch that can be added to push your other plots
apart. The patch responds to adding theme() specifications, but only plot.background will have
an effect.

Usage

plot_spacer()

Value

A ggplot object containing an empty plot

Examples

library(ggplot2)

p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))

p1 + plot_spacer() + p2

To have more control over spacing, you can use the `plot.margin`
parameter for `theme()` on each individual plot.

(p1 + theme(plot.margin = unit(c(0,30,0,0), "pt"))) +
(p2 + theme(plot.margin = unit(c(0,0,0,30), "pt")))

wrap_elements Wrap arbitrary graphics in a patchwork-compliant patch

Description

In order to add non-ggplot2 element to a patchwork they can be converted to a compliant repre-
sentation using the wrap_elements() function. This allows you to position either grobs, ggplot
objects, patchwork objects, or even base graphics (if passed as a formula) in either the full area, the
full plotting area (anything between and including the axis label), or the panel area (only the actual
area where data is drawn). Further you can still add title, subtitle, tag, and caption using the same
approach as with normal ggplots (using ggtitle() and labs()) as well as styling using theme(). For
the latter, only the theme elements targeting plot margins and background as well as title, subtitle,
etc styling will have an effect. If a patchwork or ggplot object is wrapped, it will be fixated in its
state and will no longer respond to addition of styling, geoms, etc.. When grobs and formulas are
added directly, they will implicitly be converted to wrap_elements(full = x).

16 wrap_elements

Usage

wrap_elements(
panel = NULL,
plot = NULL,
full = NULL,
clip = TRUE,
ignore_tag = FALSE

)

Arguments

panel, plot, full
A grob, ggplot, patchwork, formula, raster, nativeRaster, or gt object to add to
the respective area.

clip Should the grobs be clipped if expanding outside its area

ignore_tag Should tags be ignored for this patch. This is relevant when using automatic
tagging of plots and the content of the patch does not qualify for a tag.

Value

A wrapped_patch object

Examples

library(ggplot2)
library(grid)

Combine grobs with each other
wrap_elements(panel = textGrob('Here are some text')) +

wrap_elements(
panel = rectGrob(gp = gpar(fill = 'steelblue')),
full = rectGrob(gp = gpar(fill = 'goldenrod'))

)

wrapped elements can still get titles etc like ggplots
wrap_elements(panel = textGrob('Here are some text')) +

wrap_elements(
panel = rectGrob(gp = gpar(fill = 'steelblue')),
full = rectGrob(gp = gpar(fill = 'goldenrod'))

) +
ggtitle('Title for the amazing rectangles')

You can also pass in ggplots or patchworks to e.g. have it fill out the
panel area
p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p1 + wrap_elements(panel = p1 + ggtitle('Look at me shrink'))

You can even add base graphics if you pass it as a formula (requires gridGraphics package)
if (requireNamespace("gridGraphics", quietly = TRUE)) {

p1 + wrap_elements(full = ~ plot(mtcars$mpg, mtcars$disp))

wrap_ggplot_grob 17

Adding a grob or formula directly is equivalent to placing it in `full`
p1 + ~ plot(mtcars$mpg, mtcars$disp)

}

wrap_ggplot_grob Make a gtable created from a ggplot object patchwork compliant

Description

This function converts a gtable, as produced by ggplot2::ggplotGrob() and makes it ready to be
added to a patchwork. In contrast to passing the gtable to wrap_elements(), wrap_ggplot_grob()
ensures proper alignment as expected. On the other hand major restructuring of the gtable will result
in an object that doesn’t work properly with wrap_ggplot_grob().

Usage

wrap_ggplot_grob(x)

Arguments

x A gtable as produced by ggplot2::ggplotGrob()

Value

A table_patch object to be added to a patchwork

Examples

library(grid)
library(gtable)
library(ggplot2)

p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp)) + ggtitle('disp and mpg seems connected')
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))

Convert p2 so we can add new stuff to it
p2_table <- ggplotGrob(p2)
stamp <- textGrob('TOP SECRET', rot = 35,

gp = gpar(fontsize = 72, fontface = 'bold')
)
p2_table <- gtable_add_grob(p2_table, stamp,

t = 1, l = 1, b = nrow(p2_table), r = ncol(p2_table)
)

Adding it directly will loose alignment
p1 + p2_table

Use wrap_ggplot_grob to keep alignment

18 wrap_plots

p1 + wrap_ggplot_grob(p2_table)

wrap_plots Wrap plots into a patchwork

Description

While the use of + is a natural way to add plots together, it can be difficult to string together multiple
plots programmatically if the number of plots is not known beforehand. wrap_plots makes it easy
to take a list of plots and add them into one composition, along with layout specifications.

Usage

wrap_plots(
...,
ncol = NULL,
nrow = NULL,
byrow = NULL,
widths = NULL,
heights = NULL,
guides = NULL,
tag_level = NULL,
design = NULL,
axes = NULL,
axis_titles = axes

)

Arguments

... multiple ggplots or a list containing ggplot objects

ncol, nrow The dimensions of the grid to create - if both are NULL it will use the same logic
as facet_wrap() to set the dimensions

byrow Analogous to byrow in matrix(). If FALSE the plots will be filled in in column-
major order

widths, heights The relative widths and heights of each column and row in the grid. Will get
repeated to match the dimensions of the grid. The special value of NA/-1null
will behave as 1null unless a fixed aspect plot is inserted in which case it will
allow the dimension to expand or contract to match the aspect ratio of the content

guides A string specifying how guides should be treated in the layout. 'collect' will
collect guides below to the given nesting level, removing duplicates. 'keep'
will stop collection at this level and let guides be placed alongside their plot.
auto will allow guides to be collected if a upper level tries, but place them along-
side the plot if not. If you modify default guide "position" with theme(legend.position=...)
while also collecting guides you must apply that change to the overall patchwork
(see example).

wrap_plots 19

tag_level A string ('keep' or 'new') to indicate how auto-tagging should behave. See
plot_annotation().

design Specification of the location of areas in the layout. Can either be specified as a
text string or by concatenating calls to area() together. See the examples for
further information on use.

axes A string specifying how axes should be treated. 'keep' will retain all axes in
individual plots. 'collect' will remove duplicated axes when placed in the
same run of rows or columns of the layout. 'collect_x' and 'collect_y'
will remove duplicated x-axes in the columns or duplicated y-axes in the rows
respectively.

axis_titles A string specifying how axis titltes should be treated. 'keep' will retain all axis
titles in individual plots. 'collect' will remove duplicated titles in one direc-
tion and merge titles in the opposite direction. 'collect_x' and 'collect_y'
control this for x-axis titles and y-axis titles respectively.

Details

If design is specified as a text string and the plots are named (e.g. wrap_plots(A = p1, ...))
and all plot names are single characters represented in the design layout string, the plots will be
matched to their respective area by name. Otherwise the areas will be filled out sequentially in the
same manner as using the + operator. See the examples for more.

Value

A patchwork object

Examples

library(ggplot2)

p1 <- ggplot(mtcars) + geom_point(aes(mpg, disp))
p2 <- ggplot(mtcars) + geom_boxplot(aes(gear, disp, group = gear))
p3 <- ggplot(mtcars) + geom_bar(aes(gear)) + facet_wrap(~cyl)
p4 <- ggplot(mtcars) + geom_bar(aes(carb))
p5 <- ggplot(mtcars) + geom_violin(aes(cyl, mpg, group = cyl))

Either add the plots as single arguments
wrap_plots(p1, p2, p3, p4, p5)

Or add them as a list...
plots <- list(p1, p2, p3, p4, p5)
wrap_plots(plots)

Match plots to areas by name
design <- "#BB

AA#"
wrap_plots(B = p1, A = p2, design = design)

Compare to not using named plot arguments
wrap_plots(p1, p2, design = design)

20 wrap_table

wrap_table Wrap a table in a patchwork compliant patch

Description

This function works much like wrap_elements() in that it turns the input into patchwork compliant
objects that can be added to a composition. However, wrap_table() uses the knowledge that the
input is a table to provide some very nifty layout options that makes it generally better to use than
wrap_elements() for this type of object.

Usage

wrap_table(
table,
panel = c("body", "full", "rows", "cols"),
space = c("free", "free_x", "free_y", "fixed"),
ignore_tag = FALSE

)

Arguments

table A gt table or an object coercible to a data frame

panel what portion of the table should be aligned with the panel region? "body"
means that any column and row headers will be placed outside the panel re-
gion, i.e. the topleft corner of the panel region will be aligned with the topleft
data cell. "full" means that the whole table will be placed inside the panel
region. "rows" means that all rows (including column headers) will be placed
inside the panel region but row headers will be placed to the left. "cols" is
the opposite, placing all columns within the panel region but keeping the col-
umn header on top of it. If this is set to "body" or "cols" and space is set
to "fixed" or "free_x" then any footnotes or source notes in the table will be
placed outside the bottom of the panel region.

space How should the dimension of the table influence the final composition? "fixed"
means that the table width will set the width of the column it occupies and the ta-
ble height will set the height of the row it occupies. "free" is the opposite mean-
ing that the table dimension will not have any influence on the sizing. "free_x"
and "free_y" allows you to free either direction while keeping the remaining
fixed. Do note that if you set a specific width or height in plot_layout() it will
have higher priority than the table dimensions

ignore_tag Should tags be ignored for this patch. This is relevant when using automatic
tagging of plots and the content of the patch does not qualify for a tag.

Value

A wrapped_table object

wrap_table 21

Note

This functionality requires v0.11.0 or higher of the gt package

Examples

library(ggplot2)
library(gt)

p1 <- ggplot(airquality) +
geom_line(aes(x = Day, y = Temp, colour = month.name[Month])) +
labs(colour = "Month")

table <- data.frame(
Month = month.name[5:9],
"Mean temp." = tapply(airquality$Temp, airquality$Month, mean),
"Min temp." = tapply(airquality$Temp, airquality$Month, min),
"Max temp." = tapply(airquality$Temp, airquality$Month, max)

)
gt_tab <- gt(table, rowname_col = "Month")

Default addition usees wrap_table
p1 + gt_tab

Default places column and row headers outside panel area. Use wrap_table
to control this
p1 + wrap_table(gt_tab, panel = "full")

Tables generally have fixed dimensions and these can be used to control
the size of the area they occupy
p2 <- ggplot(airquality) +

geom_boxplot(aes(y = month.name[Month], x = Temp)) +
scale_y_discrete(name = NULL, limits = month.name[9:5], guide = "none")

wrap_table(gt_tab, space = "fixed") + p2

Index

*.gg (plot_arithmetic), 10
-.ggplot (plot_arithmetic), 10
/.ggplot (plot_arithmetic), 10
&.gg (plot_arithmetic), 10

align_patches (multipage_align), 7
area, 2
area(), 13, 19

facet_wrap(), 12, 18
free, 3

get_dim (multipage_align), 7
get_max_dim (multipage_align), 7
ggplot2::ggplotGrob(), 17
ggtitle(), 15
guide_area, 5

inset_element, 6

labs(), 15

matrix(), 13, 18
multipage_align, 7

plot_annotation, 9
plot_annotation(), 13, 19
plot_arithmetic, 10
plot_layout, 10, 12
plot_layout(), 3, 5, 9, 20
plot_spacer, 14
plot_spacer(), 5

set_dim (multipage_align), 7

theme(), 15
theme(legend.position=...), 13, 18

wrap_elements, 15
wrap_elements(), 17, 20
wrap_ggplot_grob, 17
wrap_plots, 18
wrap_table, 20

22

	area
	free
	guide_area
	inset_element
	multipage_align
	plot_annotation
	plot_arithmetic
	plot_layout
	plot_spacer
	wrap_elements
	wrap_ggplot_grob
	wrap_plots
	wrap_table
	Index

