
Package: DT (via r-universe)
November 25, 2024

Type Package

Title A Wrapper of the JavaScript Library 'DataTables'

Version 0.33.2

Description Data objects in R can be rendered as HTML tables using the
JavaScript library 'DataTables' (typically via R Markdown or
Shiny). The 'DataTables' library has been included in this R
package. The package name 'DT' is an abbreviation of
'DataTables'.

URL https://github.com/rstudio/DT

BugReports https://github.com/rstudio/DT/issues

License GPL-3 | file LICENSE

Imports htmltools (>= 0.3.6), htmlwidgets (>= 1.3), httpuv, jsonlite
(>= 0.9.16), magrittr, crosstalk, jquerylib, promises

Suggests knitr (>= 1.8), rmarkdown, shiny (>= 1.6), bslib, future,
testit, tibble

VignetteBuilder knitr

RoxygenNote 7.3.1

Encoding UTF-8

Config/pak/sysreqs make zlib1g-dev

Repository https://ar-puuk.r-universe.dev

RemoteUrl https://github.com/rstudio/DT

RemoteRef HEAD

RemoteSha def0cae8e4d5861068306039ec940e89e01a2ff9

Contents
coerceValue . 2
datatable . 3
dataTableAjax . 8
dataTableOutput . 9

1

https://github.com/rstudio/DT
https://github.com/rstudio/DT/issues

2 coerceValue

dataTableProxy . 11
doColumnSearch . 13
DT-imports . 14
editData . 15
formatCurrency . 15
replaceData . 19
styleInterval . 19
tableHeader . 21

Index 22

coerceValue Coerce a character string to the same type as a target value

Description

Create a new value from a character string based on an old value, e.g., if the old value is an integer,
call as.integer() to coerce the string to an integer.

Usage

coerceValue(val, old)

Arguments

val A character string.

old An old value, whose type is the target type of val.

Details

This function only works with integer, double, date, time (POSIXlt or POSIXct), and factor values.
The date must be of the format %Y-%m-%dT%H:%M:%SZ. The factor value must be in the levels of old,
otherwise it will be coerced to NA.

Value

A value of the same data type as old if possible.

Examples

library(DT)
coerceValue("100", 1L)
coerceValue("1.23", 3.1416)
coerceValue("2018-02-14", Sys.Date())
coerceValue("2018-02-14T22:18:52Z", Sys.time())
coerceValue("setosa", iris$Species)
coerceValue("setosa2", iris$Species) # NA
coerceValue("FALSE", TRUE) # not supported

datatable 3

datatable Create an HTML table widget using the DataTables library

Description

This function creates an HTML widget to display rectangular data (a matrix or data frame) using
the JavaScript library DataTables.

Usage

datatable(
data,
options = list(),
class = "display",
callback = JS("return table;"),
rownames,
colnames,
container,
caption = NULL,
filter = c("none", "bottom", "top"),
escape = TRUE,
style = "auto",
width = NULL,
height = NULL,
elementId = NULL,
fillContainer = getOption("DT.fillContainer", NULL),
autoHideNavigation = getOption("DT.autoHideNavigation", NULL),
lazyRender = NULL,
selection = c("multiple", "single", "none"),
extensions = list(),
plugins = NULL,
editable = FALSE

)

Arguments

data a data object (either a matrix or a data frame)

options a list of initialization options (see https://datatables.net/reference/option/);
the character options wrapped in JS() will be treated as literal JavaScript code
instead of normal character strings; you can also set options globally via options(DT.options
= list(...)), and global options will be merged into this options argument if
set

class the CSS class(es) of the table; see https://datatables.net/manual/styling/
classes

callback the body of a JavaScript callback function with the argument table to be applied
to the DataTables instance (i.e. table)

https://datatables.net/reference/option/
https://datatables.net/manual/styling/classes
https://datatables.net/manual/styling/classes

4 datatable

rownames TRUE (show row names) or FALSE (hide row names) or a character vector of row
names; by default, the row names are displayed in the first column of the table
if exist (not NULL)

colnames if missing, the column names of the data; otherwise it can be an unnamed char-
acter vector of names you want to show in the table header instead of the default
data column names; alternatively, you can provide a named numeric or char-
acter vector of the form 'newName1' = i1,'newName2' = i2 or c('newName1'
= 'oldName1', 'newName2' = 'oldName2', ...), where newName is the new
name you want to show in the table, and i or oldName is the index of the current
column name

container a sketch of the HTML table to be filled with data cells; by default, it is generated
from htmltools::tags$table() with a table header consisting of the column
names of the data

caption the table caption; a character vector or a tag object generated from htmltools::tags$caption()

filter whether/where to use column filters; none: no filters; bottom/top: put col-
umn filters at the bottom/top of the table; range sliders are used to filter nu-
meric/date/time columns, select lists are used for factor columns, and text input
boxes are used for character columns; if you want more control over the styles
of filters, you can provide a named list to this argument; see Details for more

escape whether to escape HTML entities in the table: TRUE means to escape the whole
table, and FALSE means not to escape it; alternatively, you can specify numeric
column indices or column names to indicate which columns to escape, e.g. 1:5
(the first 5 columns), c(1, 3, 4), or c(-1, -3) (all columns except the first and
third), or c('Species', 'Sepal.Length'); since the row names take the first
column to display, you should add the numeric column indices by one when
using rownames

style either 'auto', 'default', 'bootstrap', or 'bootstrap4'. If 'auto', and a
bslib theme is currently active, then bootstrap styling is used in a way that
"just works" for the active theme. Otherwise, DataTables ’default’ styling is
used. If set explicitly to 'bootstrap' or 'bootstrap4', one must take care
to ensure Bootstrap’s HTML dependencies (as well as Bootswatch themes, if
desired) are included on the page. Note, when set explicitly, it’s the user’s re-
sponsibility to ensure that only one unique ‘style‘ value is used on the same
page, if multiple DT tables exist, as different styling resources may conflict with
each other.

width, height Width/Height in pixels (optional, defaults to automatic sizing)

elementId An id for the widget (a random string by default).

fillContainer TRUE to configure the table to automatically fill it’s containing element. If the
table can’t fit fully into it’s container then vertical and/or horizontal scrolling of
the table cells will occur.

autoHideNavigation

TRUE to automatically hide navigational UI (only display the table body) when
the number of total records is less than the page size. Note, it only works on the
client-side processing mode and the ‘pageLength‘ option should be provided
explicitly.

https://datatables.net/manual/styling/classes

datatable 5

lazyRender FALSE to render the table immediately on page load, otherwise delay rendering
until the table becomes visible.

selection the row/column selection mode (single or multiple selection or disable selec-
tion) when a table widget is rendered in a Shiny app; alternatively, you can use
a list of the form list(mode = 'multiple',selected = c(1, 3, 8), target =
'row', selectable = c(-2, -3)) to pre-select rows and control the selectable
range; the element target in the list can be 'column' to enable column se-
lection, or 'row+column' to make it possible to select both rows and columns
(click on the footer to select columns), or 'cell' to select cells. See details
section for more info.

extensions a character vector of the names of the DataTables extensions (https://datatables.
net/extensions/index)

plugins a character vector of the names of DataTables plug-ins (https://rstudio.
github.io/DT/plugins.html). Note that only those plugins supported by the
DT package can be used here. You can see the available plugins by calling
DT:::available_plugins()

editable FALSE to disable the table editor, or TRUE (or "cell") to enable editing a sin-
gle cell. Alternatively, you can set it to "row" to be able to edit a row, or
"column" to edit a column, or "all" to edit all cells on the current page of the
table. In all modes, start editing by doubleclicking on a cell. This argument can
also be a list of the form list(target = TARGET, disable = list(columns =
INDICES)), where TARGET can be "cell", "row", "column", or "all", and
INDICES is an integer vector of column indices. Use the list form if you want
to disable editing certain columns. You can also restrict the editing to accept
only numbers by setting this argument to a list of the form list(target =
TARGET, numeric = INDICES) where INDICES can be the vector of the indices
of the columns for which you want to restrict the editing to numbers or "all"
to restrict the editing to numbers for all columns. If you don’t set numeric,
then the editing is restricted to numbers for all numeric columns; set numeric =
"none" to disable this behavior. It is also possible to edit the cells in text areas,
which are useful for large contents. For that, set the editable argument to a
list of the form list(target = TARGET, area = INDICES) where INDICES can
be the vector of the indices of the columns for which you want the text areas,
or "all" if you want the text areas for all columns. Of course, you can request
the numeric editing for some columns and the text areas for some other columns
by setting editable to a list of the form list(target = TARGET, numeric =
INDICES1, area = INDICES2). Finally, you can edit date cells with a calendar
with list(target = TARGET, date = INDICES); the target columns must have
the Date type. If you don’t set date in the editable list, the editing with the
calendar is automatically set for all Date columns.

Details

selection:

1. The argument could be a scalar string, which means the selection mode, whose value could be
one of 'multiple' (the default), 'single' and 'none' (disable selection).

https://datatables.net/extensions/index
https://datatables.net/extensions/index
https://rstudio.github.io/DT/plugins.html
https://rstudio.github.io/DT/plugins.html

6 datatable

2. When a list form is provided for this argument, only parts of the "full" list are allowed. The
default values for non-matched elements are list(mode = 'multiple', selected = NULL,
target = 'row', selectable = NULL).

3. target must be one of 'row', 'column', 'row+column' and 'cell'.

4. selected could be NULL or "indices".

5. selectable could be NULL, TRUE, FALSE or "indices", where NULL and TRUE mean all the table
is selectable. When FALSE, it means users can’t select the table by the cursor (but they could
still be able to select the table via dataTableProxy, specifying ignore.selectable = TRUE).
If "indices", they must be all positive or non-positive values. All positive "indices" mean only
the specified ranges are selectable while all non-positive "indices" mean those ranges are not
selectable. The "indices"’ format is specified below.

6. The "indices"’ format of selected and selectable: when target is 'row' or 'column', it
should be a plain numeric vector; when target is 'row+column', it should be a list, speci-
fying rows and cols respectively, e.g., list(rows = 1, cols = 2); when target is 'cell',
it should be a 2-col matrix, where the two values of each row stand for the row and column
index.

7. Note that DT has its own selection implementation and doesn’t use the Select extension be-
cause the latter doesn’t support the server-side processing mode well. Please set this argument
to 'none' if you really want to use the Select extension.

options$columnDefs:

1. columnDefs is an option that provided by the DataTables library itself, where the user can
set various attributes for columns. It must be provided as a list of list, where each sub-list
must contain a vector named ’targets’, specifying the applied columns, i.e., list(list(...,
targets = '_all'), list(..., targets = c(1, 2)))

2. columnDefs$targets is a vector and should be one of:

• 0 or a positive integer: column index counting from the left.
• A negative integer: column index counting from the right.
• A string: the column name. Note, it must be the names of the original data, not the ones

that (could) be changed via param colnames.
• The string "_all": all columns (i.e. assign a default).

3. When conflicts happen, e.g., a single column is defined for some property twice but with differ-
ent values, the value that defined earlier takes the priority. For example, list(list(visible=FALSE,
target=1), list(visible=TRUE, target=1)) results in a table whose first column is invis-
ible.

4. See https://datatables.net/reference/option/columnDefs for more.

filter:

1. filter can be used to position and customize column filters. A scalar string value defines the
position, and must be one of 'none' (the default), 'bottom' and 'top'. A named list can be
used for further control. In the named list form:

2. $position is a string as described above. It defaults to 'none'.

3. $clear is a logical value indicating if clear buttons should appear in input boxes. It defaults
to TRUE.

https://datatables.net/reference/option/columnDefs

datatable 7

4. $plain is a logical value indicating if plain styling should be used for input boxes instead of
Bootstrap styling. It defaults to FALSE.

5. $vertical is a logical value indicating if slider widgets should be oriented vertically rather
than horizontally. It defaults to FALSE.

6. $opacity is a numeric value between 0 and 1 used to set the level of transparency of slider
widgets. It defaults to 1.

7. $settings is a named list used to directly pass configuration for initializing filter widgets in
JavaScript.

• The $select element is passed to the select widget, and $slider is passed to the slider
widget.

• Valid values depend on the settings accepted by the underlying JavaScript libraries, Se-
lectize and noUiSlider. Please note that the versions bundled with DT are currently quite
old, so accepted settings may not match their most recent documentation.

• These settings can override values set by DT, so specifying a setting already in use may
break something. Use with care.

Note

You are recommended to escape the table content for security reasons (e.g. XSS attacks) when
using this function in Shiny or any other dynamic web applications.

References

See https://rstudio.github.io/DT/ for the full documentation.

Examples

library(DT)

see the package vignette for examples and the link to website
vignette('DT', package = 'DT')

some boring edge cases for testing purposes
m = matrix(nrow = 0, ncol = 5, dimnames = list(NULL, letters[1:5]))
datatable(m) # zero rows
datatable(as.data.frame(m))

m = matrix(1, dimnames = list(NULL, 'a'))
datatable(m) # one row and one column
datatable(as.data.frame(m))

m = data.frame(a = 1, b = 2, c = 3)
datatable(m)
datatable(as.matrix(m))

dates
datatable(data.frame(

date = seq(as.Date("2015-01-01"), by = "day", length.out = 5), x = 1:5
))
datatable(data.frame(x = Sys.Date()))

https://selectize.dev/
https://selectize.dev/
https://refreshless.com/nouislider/
https://rstudio.github.io/DT/

8 dataTableAjax

datatable(data.frame(x = Sys.time()))

dataTableAjax Register a data object in a shiny session for DataTables

Description

This function stores a data object in a shiny session and returns a URL that returns JSON data based
on DataTables Ajax requests. The URL can be used as the url option inside the ajax option of
the table. It is basically an implementation of server-side processing of DataTables in R. Filtering,
sorting, and pagination are processed through R instead of JavaScript (client-side processing).

Usage

dataTableAjax(
session,
data,
rownames,
filter = dataTablesFilter,
outputId,
future = FALSE

)

Arguments

session the session object in the shiny server function (function(input, output,
session))

data a data object (will be coerced to a data frame internally)
rownames see datatable(); it must be consistent with what you use in datatable(), e.g.

if the widget is generated by datatable(rownames = FALSE), you must also use
dataTableAjax(rownames = FALSE) here

filter (for expert use only) a function with two arguments data and params (Ajax
parameters, a list of the form list(search = list(value = 'FOO', regex =
'false'), length = 10, ...)) that return the filtered table result according to
the DataTables Ajax request

outputId the output ID of the table (the same ID passed to dataTableOutput(); if miss-
ing, an attempt to infer it from session is made. If it can’t be inferred, a random
id is generated.)

future whether the server-side filter function should be executed as a future or as a
standard synchronous function. If true, the future will be evaluated according to
the session’s plan.

Details

Normally you should not need to call this function directly. It is called internally when a table
widget is rendered in a Shiny app to configure the table option ajax automatically. If you are
familiar with DataTables’ server-side processing, and want to use a custom filter function, you
may call this function to get an Ajax URL.

dataTableOutput 9

Value

A character string (an Ajax URL that can be queried by DataTables).

References

https://rstudio.github.io/DT/server.html

Examples

DTApp = function(data, ..., options = list()) {
library(shiny)
library(DT)
shinyApp(
ui = fluidPage(

title = 'Server-side processing of DataTables',
fluidRow(

DT::dataTableOutput('tbl')
)

),
server = function(input, output, session) {

options$serverSide = TRUE
options$ajax = list(url = dataTableAjax(session, data, outputId = 'tbl'))
create a widget using an Ajax URL created above
widget = datatable(data, ..., options = options)
output$tbl = DT::renderDataTable(widget)

}
)

}

if (interactive()) DTApp(iris)
if (interactive()) DTApp(iris, filter = 'top')

dataTableOutput Helper functions for using DT in Shiny

Description

These two functions are like most fooOutput() and renderFoo() functions in the shiny package.
The former is used to create a container for table, and the latter is used in the server logic to render
the table.

Usage

dataTableOutput(outputId, width = "100%", height = "auto", fill = TRUE)

DTOutput(outputId, width = "100%", height = "auto", fill = TRUE)

renderDataTable(
expr,

https://rstudio.github.io/DT/server.html

10 dataTableOutput

server = TRUE,
env = parent.frame(),
quoted = FALSE,
funcFilter = dataTablesFilter,
future = FALSE,
outputArgs = list(),
...

)

renderDT(
expr,
server = TRUE,
env = parent.frame(),
quoted = FALSE,
funcFilter = dataTablesFilter,
future = FALSE,
outputArgs = list(),
...

)

Arguments

outputId output variable to read the table from

width the width of the table container

height the height of the table container

fill passed to htmlwidgets::shinyWidgetOutput(), see there for explanation (re-
quires htmlwidgets > v1.5.4).

expr an expression to create a table widget (normally via datatable()), or a data
object to be passed to datatable() to create a table widget

server whether to use server-side processing. If TRUE, then the data is kept on the server
and the browser requests a page at a time; if FALSE, then the entire data frame
is sent to the browser at once. Highly recommended for medium to large data
frames, which can cause browsers to slow down or crash. Note that if you want
to use renderDataTable with shiny::bindCache(), this must be FALSE.

env The parent environment for the reactive expression. By default, this is the calling
environment, the same as when defining an ordinary non-reactive expression. If
expr is a quosure and quoted is TRUE, then env is ignored.

quoted If it is TRUE, then the quote()ed value of expr will be used when expr is eval-
uated. If expr is a quosure and you would like to use its expression as a value
for expr, then you must set quoted to TRUE.

funcFilter (for expert use only) passed to the filter argument of dataTableAjax()

future whether the server-side filter function should be executed as a future or as a
standard synchronous function. If true, the future will be evaluated according to
the session’s plan.

outputArgs A list of arguments to be passed through to the implicit call to dataTableOutput()
when renderDataTable() is used in an interactive R Markdown document.

dataTableProxy 11

... ignored when expr returns a table widget, and passed as additional arguments
to datatable() when expr returns a data object

References

https://rstudio.github.io/DT/shiny.html

Examples

if (interactive()) {
library(shiny)
library(DT)
shinyApp(
ui = fluidPage(fluidRow(column(12, DTOutput('tbl')))),
server = function(input, output) {

output$tbl = renderDT(
iris, options = list(lengthChange = FALSE)

)
}

)
}

dataTableProxy Manipulate an existing DataTables instance in a Shiny app

Description

The function dataTableProxy() creates a proxy object that can be used to manipulate an existing
DataTables instance in a Shiny app, e.g. select rows/columns, or add rows.

Usage

dataTableProxy(
outputId,
session = shiny::getDefaultReactiveDomain(),
deferUntilFlush = TRUE

)

selectRows(proxy, selected, ignore.selectable = FALSE)

selectColumns(proxy, selected, ignore.selectable = FALSE)

selectCells(proxy, selected, ignore.selectable = FALSE)

addRow(proxy, data, resetPaging = TRUE)

clearSearch(proxy)

https://rstudio.github.io/DT/shiny.html

12 dataTableProxy

selectPage(proxy, page)

updateCaption(proxy, caption)

updateSearch(proxy, keywords = list(global = NULL, columns = NULL))

showCols(proxy, show, reset = FALSE)

hideCols(proxy, hide, reset = FALSE)

colReorder(proxy, order, origOrder = FALSE)

reloadData(
proxy,
resetPaging = TRUE,
clearSelection = c("all", "none", "row", "column", "cell")

)

Arguments

outputId the id of the table to be manipulated (the same id as the one you used in dataTableOutput())

session the Shiny session object (from the server function of the Shiny app)
deferUntilFlush

whether an action should be carried out right away, or should be held until after
the next time all of the outputs are updated

proxy a proxy object returned by dataTableProxy()

selected an integer vector of row/column indices, or a matrix of two columns (row and
column indices, respectively) for cell indices; you may use NULL to clear existing
selections

ignore.selectable

when FALSE (the default), the "non-selectable" range specified by selection =
list(selectable=) is respected, i.e., you can’t select "non-selectable" range.
Otherwise, it is ignored.

data a single row of data to be added to the table; it can be a matrix or data frame
of one row, or a vector or list of row data (in the latter case, please be cautious
about the row name: if your table contains row names, here data must also
contain the row name as the first element)

resetPaging whether to reset the paging position

page a number indicating the page to select

caption a new table caption (see the caption argument of datatable())

keywords a list of two components: global is the global search keyword of a single char-
acter string (ignored if NULL); columns is a character vector of the search key-
words for all columns (when the table has one column for the row names, this
vector of keywords should contain one keyword for the row names as well)

show a vector of column positions to show (the indexing starts at 0, but if row.names
are visible, they are the first column).

doColumnSearch 13

reset if TRUE, will only show/hide the columns indicated.

hide a vector of column positions to hide

order A numeric vector of column positions, starting from 0, and including the row.names
as a column, if they are include. Must contain a value for all columns, regard-
less of whether they are visible or not. Also for column reordering to work, the
datatable must have extension ’ColReorder’ set as well as option ’colReordoer’
set to TRUE).

origOrder Whether column reordering should be relative to the original order (the default
is to compare to current order)

clearSelection which existing selections to clear: it can be any combinations of row, column,
and cell, or all for all three, or none to keep current selections (by default, all
selections are cleared after the data is reloaded)

Note

addRow() only works for client-side tables. If you want to use it in a Shiny app, make sure to use
renderDataTable(..., server = FALSE). Also note that the column filters (if used) of the table
will not be automatically updated when a new row is added, e.g., the range of the slider of a column
will stay the same even if you have added a value outside the range of the original data column.

reloadData() only works for tables in the server-side processing mode, e.g. tables rendered with
renderDataTable(server = TRUE). The data to be reloaded (i.e. the one you pass to dataTableAjax())
must have exactly the same number of columns as the previous data object in the table.

References

https://rstudio.github.io/DT/shiny.html

doColumnSearch Server-side searching

Description

doGlobalSearch() can be used to search a data frame given the search string typed by the user
into the global search box of a datatable. doColumnSearch() does the same for a vector given
the search string typed into a column filter. These functions are used internally by the default filter
function passed to dataTableAjax(), allowing you to replicate the search results that server-side
processing returns.

Usage

doColumnSearch(x, search_string, options = list())

doGlobalSearch(data, search_string, options = list())

https://rstudio.github.io/DT/shiny.html

14 DT-imports

Arguments

x a vector, the type of which determines the expected search_string format

search_string a string that determines what to search for. The format depends on the type of
input, matching what a user would type in the associated filter control.

options a list of options used to control how searching character values works. Supported
options are regex, caseInsensitive and (for global search) smart.

data a data frame

Value

An integer vector of filtered row indices

See Also

The column filters section online for search string formats: https://rstudio.github.io/DT/

Accessing the search strings typed by a user in a Shiny app: https://rstudio.github.io/DT/
shiny.html

Examples

doGlobalSearch(iris, "versi")
doGlobalSearch(iris, "v.r.i", options = list(regex = TRUE))

doColumnSearch(iris$Species, "[\"versicolor\"]")
doColumnSearch(iris$Sepal.Length, "4 ... 5")

DT-imports Objects imported from other packages

Description

These objects are imported from other packages. Follow the links to their documentation.

htmlwidgets JS, saveWidget

magrittr %>%

https://datatables.net/reference/option/search.smart
https://rstudio.github.io/DT/
https://rstudio.github.io/DT/shiny.html
https://rstudio.github.io/DT/shiny.html

editData 15

editData Edit a data object using the information from the editor in a DataTable

Description

When editing cells in a DataTable in a Shiny app, we know the row/column indices and values of the
cells that were edited. With these information, we can update the data object behind the DataTable
accordingly.

Usage

editData(data, info, proxy = NULL, rownames = TRUE, resetPaging = FALSE, ...)

Arguments

data The original data object used in the DataTable.

info The information about the edited cells. It should be obtained from input$tableId_cell_edit
from Shiny, and is a data frame containing columns row, col, and value.

proxy, resetPaging, ...
(Optional) If proxy is provided, it must be either a character string of the output
ID of the table or a proxy object created from dataTableProxy(), and the rest
of arguments are passed to replaceData() to update the data in a DataTable
instance in a Shiny app.

rownames Whether row names are displayed in the table.

Value

The updated data object.

Note

For factor columns, new levels would be automatically added when necessary to avoid NA coercing.

formatCurrency Format table columns

Description

Format numeric columns in a table as currency (formatCurrency()) or percentages (formatPercentage()),
or round numbers to a specified number of decimal places (formatRound()), or a specified number
of significant figures (formatSignif()). The function formatStyle() applies CSS styles to table
cells by column.

16 formatCurrency

Usage

formatCurrency(
table,
columns,
currency = "$",
interval = 3,
mark = ",",
digits = 2,
dec.mark = getOption("OutDec"),
before = TRUE,
zero.print = NULL,
rows = NULL

)

formatString(table, columns, prefix = "", suffix = "", rows = NULL)

formatPercentage(
table,
columns,
digits = 0,
interval = 3,
mark = ",",
dec.mark = getOption("OutDec"),
zero.print = NULL,
rows = NULL

)

formatRound(
table,
columns,
digits = 2,
interval = 3,
mark = ",",
dec.mark = getOption("OutDec"),
zero.print = NULL,
rows = NULL

)

formatSignif(
table,
columns,
digits = 2,
interval = 3,
mark = ",",
dec.mark = getOption("OutDec"),
zero.print = NULL,
rows = NULL

)

formatCurrency 17

formatDate(table, columns, method = "toDateString", params = NULL, rows = NULL)

formatStyle(
table,
columns,
valueColumns = columns,
target = c("cell", "row"),
fontWeight = NULL,
color = NULL,
backgroundColor = NULL,
background = NULL,
...

)

Arguments

table a table object created from datatable()

columns the indices of the columns to be formatted (can be character, numeric, logical,
or a formula of the form ~ V1 + V2, which is equivalent to c('V1', 'V2'))

currency the currency symbol

interval put a marker after how many digits of the numbers

mark the marker after every interval decimals in the numbers

digits the number of decimal places to round to

dec.mark a character to indicate the decimal point

before whether to place the currency symbol before or after the values

zero.print a string to specify how zeros should be formatted. Useful for when many zero
values exist. If NULL, keeps zero as it is.

rows an integer vector (starting from 1) to specify the only rows that the style ap-
plies to. By default, it’s NULL, meaning all rows should be formatted. Note,
formatStyle() doesn’t support this argument and you should use styleRow()
instead. In addition, this only works expected in the client-side processing mode,
i.e., server = FALSE.

prefix string to put in front of the column values

suffix string to put after the column values

method the method(s) to convert a date to string in JavaScript; see DT:::DateMethods
for a list of possible methods, and https://developer.mozilla.org/en-US/
docs/Web/JavaScript/Reference/Global_Objects/Date for a full reference

params a list parameters for the specific date conversion method, e.g., for the toLocaleDateString()
method, your browser may support params = list('ko-KR', list(year = 'numeric',
month = 'long', day = 'numeric'))

valueColumns indices of the columns from which the cell values are obtained; this can be
different with the columns argument, e.g. you may style one column based on
the values of a different column

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Date

18 formatCurrency

target the target to apply the CSS styles to (the current cell or the full row)

fontWeight the font weight, e.g. 'bold' and 'normal'

color the font color, e.g. 'red' and '#ee00aa'

backgroundColor

the background color of table cells

background the background of table cells

... other CSS properties, e.g. 'border', 'font-size', 'text-align', and so on;
if you want to condition CSS styles on the cell values, you may use the helper
functions such as styleInterval(); note the actual CSS property names are
dash-separated, but you can use camelCase names in this function (otherwise
you will have to use backticks to quote the names, e.g. `font-size` = '12px'),
and this function will automatically convert camelCase names to dash-separated
names (e.g. 'fontWeight' will be converted to 'font-weight' internally)

Note

The length of arguments other than table should be 1 or the same as the length of columns.

References

See https://rstudio.github.io/DT/functions.html for detailed documentation and exam-
ples.

Examples

library(DT)
m = cbind(matrix(rnorm(120, 1e5, 1e6), 40), runif(40), rnorm(40, 100))
colnames(m) = head(LETTERS, ncol(m))
m

format the columns A and C as currency, and D as percentages
datatable(m) %>% formatCurrency(c('A', 'C')) %>% formatPercentage('D', 2)

the first two columns are Euro currency, and round column E to 3 decimal places
datatable(m) %>% formatCurrency(1:2, '\U20AC') %>% formatRound('E', 3)

render vapor pressure with only two significant figures.
datatable(pressure) %>% formatSignif('pressure',2)

apply CSS styles to columns
datatable(iris) %>%

formatStyle('Sepal.Length', fontWeight = styleInterval(5, c('bold', 'weight'))) %>%
formatStyle('Sepal.Width',

color = styleInterval(3.4, c('red', 'white')),
backgroundColor = styleInterval(3.4, c('yellow', 'gray'))

)

https://rstudio.github.io/DT/functions.html

replaceData 19

replaceData Replace data in an existing table

Description

Replace the data object of a table output and avoid regenerating the full table, in which case the
state of the current table will be preserved (sorting, filtering, and pagination) and applied to the
table with new data.

Usage

replaceData(proxy, data, ..., resetPaging = TRUE, clearSelection = "all")

updateFilters(proxy, data)

Arguments

proxy a proxy object created by dataTableProxy()

data the new data object to be loaded in the table

... other arguments to be passed to dataTableAjax()

resetPaging, clearSelection
passed to reloadData()

Note

When you replace the data in an existing table, please make sure the new data has the same number
of columns as the current data. When you have enabled column filters, you should also make
sure the attributes of every column remain the same, e.g. factor columns should have the same
or fewer levels, and numeric columns should have the same or smaller range, otherwise the filters
may never be able to reach certain rows in the data, unless you explicitly update the filters with
updateFilters().

If the ColReorder extension is used, the new data must have column names that match the original
data column names exactly.

styleInterval Conditional CSS styles

Description

A few helper functions for the formatStyle() function to calculate CSS styles for table cells based
on the cell values. Under the hood, they just generate JavaScript and CSS code from the values
specified in R.

20 styleInterval

Usage

styleInterval(cuts, values)

styleEqual(levels, values, default = NULL)

styleValue()

styleColorBar(data, color, angle = 90)

styleRow(rows, values, default = NULL)

Arguments

cuts a vector of cut points (sorted increasingly)

values a vector of CSS values

levels a character vector of data values to be mapped (one-to-one) to CSS values

default a string or NULL used as the the default CSS value for values other than levels. If
NULL, the CSS value of non-matched cells will be left unchanged.

data a numeric vector whose range will be used for scaling the table data from 0-100
before being represented as color bars. A vector of length 2 is acceptable here
for specifying a range possibly wider or narrower than the range of the table data
itself.

color the color of the bars

angle a number of degrees representing the direction to fill the gradient relative to a
horizontal line and the gradient line, going counter-clockwise. For example, 90
fills right to left and -90 fills left to right.

rows the Row Indexes (starting from 1) that applies the CSS style. It could be an
integer vector or a list of integer vectors, whose length must be equal to the
length of values, when values is not a scalar.

Details

The function styleInterval() maps intervals to CSS values. Its argument values must be of
length n + 1 where n = length(cuts). The right-closed interval ‘(cuts[i - 1], cuts[i]]’ is
mapped to ‘values[i]’ for ‘i = 2, 3, ..., n’; ‘values[1]’ is for the interval ‘(-Inf, cuts[1]]’,
and ‘values[n + 1]’ is for ‘(cuts[n], +Inf)’. You can think of the order of cuts and values us-
ing this diagram: ‘-Inf -> values[1] -> cuts[1] -> values[2] -> cuts[2] -> ... -> values[n]
-> cuts[n] -> values[n + 1] -> +Inf’.

The function styleEqual() maps data values to CSS values in the one-to-one manner, i.e. values[i]
is used when the table cell value is levels[i].

The function styleColorBar() can be used to draw background color bars behind table cells in a
column, and the width of bars is proportional to the column values.

The function styleValue() uses the column value as the CSS values.

The function styleRow() applies the CSS values based on Row Indexes. This only works expected
in the client-side processing mode, i.e., server = FALSE.

tableHeader 21

tableHeader Generate a table header or footer from column names

Description

Convenience functions to generate a table header (‘<thead></thead>’) or footer (‘<tfoot></tfoot>’)
given the column names. They are basically wrappers of htmltools::tags$th applied to the col-
umn names.

Usage

tableHeader(names, escape = TRUE)

tableFooter(names, escape = TRUE)

Arguments

names a character vector of the column names of the table (if it is an object with column
names, its column names will be used instead)

escape whether to escape the names (see datatable)

Value

A tag object generated by htmltools::tags.

Examples

library(DT)
tableHeader(iris) # or equivalently,
tableHeader(colnames(iris))
tableFooter(iris) # footer

library(htmltools)
tags$table(tableHeader(iris), tableFooter(iris))

Index

%>% (DT-imports), 14
%>%, 14

addRow (dataTableProxy), 11

clearSearch (dataTableProxy), 11
coerceValue, 2
colReorder (dataTableProxy), 11

datatable, 3, 8, 10–13, 17, 21
dataTableAjax, 8, 10, 13, 19
dataTableOutput, 9, 10, 12
dataTableProxy, 6, 11, 15
doColumnSearch, 13
doGlobalSearch (doColumnSearch), 13
DT-imports, 14
DTOutput (dataTableOutput), 9

editData, 15

formatCurrency, 15
formatDate (formatCurrency), 15
formatPercentage (formatCurrency), 15
formatRound (formatCurrency), 15
formatSignif (formatCurrency), 15
formatString (formatCurrency), 15
formatStyle, 19
formatStyle (formatCurrency), 15

hideCols (dataTableProxy), 11

JS, 3, 14
JS (DT-imports), 14

options, 3

plan, 8, 10

quote, 10

reloadData, 19
reloadData (dataTableProxy), 11

renderDataTable, 10
renderDataTable (dataTableOutput), 9
renderDT (dataTableOutput), 9
replaceData, 15, 19

saveWidget, 14
saveWidget (DT-imports), 14
selectCells (dataTableProxy), 11
selectColumns (dataTableProxy), 11
selectPage (dataTableProxy), 11
selectRows (dataTableProxy), 11
shinyWidgetOutput, 10
showCols (dataTableProxy), 11
styleColorBar (styleInterval), 19
styleEqual (styleInterval), 19
styleInterval, 18, 19
styleRow (styleInterval), 19
styleValue (styleInterval), 19

tableFooter (tableHeader), 21
tableHeader, 21

updateCaption (dataTableProxy), 11
updateFilters (replaceData), 19
updateSearch (dataTableProxy), 11

22

	coerceValue
	datatable
	dataTableAjax
	dataTableOutput
	dataTableProxy
	doColumnSearch
	DT-imports
	editData
	formatCurrency
	replaceData
	styleInterval
	tableHeader
	Index

